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Abstract The properties of noble gas systems can be great-
ly extended by heterogeneous mixtures of elements. The
geometrical structures and energies of mixed Ar–Kr–Xe
clusters were investigated using ternary Lennard-Jones
(TLJ) potential. For the Ar19KrnXe19, Ar19Kr19Xen, and
ArnKr19Xe19 (n=0–17) clusters investigated, the results
show that only two minimum energy configurations exist,
i.e., polytetrahedron and six-fold pancake. The inner core of
all these clusters is composed mainly of Ar atoms, and Kr
and Xe atoms are distributed on the surface with well
mixed pattern for polytetrahedral and segregate pattern
for six-fold pancake configurations. The relative stability
property of Ar–Kr–Xe clusters with a certain composi-
tion is discussed. Moreover, the role of heterogeneity on
the strain was investigated, and reduced strain energies
in Ar–Kr–Xe clusters were studied to find possible
ways of reducing strain. The results showed that the
strain energies were affected mainly by Ar–Ar, Ar–Kr,
and Xe–Xe bonds.

Keywords Noble gas . Ar–Kr–Xe cluster . Lennard-Jones
potential . Structural optimization

Introduction

Atomic / molecular clusters containing from a few to tens of
thousands of atoms have been much studied because of their
unique, size-dependent structures and properties that differ
from the bulk chemical [1]. Many studies have traced the

structural growth patterns of atomic clusters of different
sizes to study their properties. Experimental and theoretical
studies implied that the structure of noble gas clusters is
icosahedral at small size and undergoes a direct transition to
being face centered cubic (fcc) with increasing size [2–4].
Clusters of argon, krypton, and xenon are grown in a free jet
and ionized by electron impact, and pronounced “magic
numbers” in the distributions of large cluster ions occur at
sizes of 147 (148 for Ar), 309, and 561 [5]. Formation of the
electronic band structure by the valence-shell of Ar, Kr, and
Xe clusters was studied for various cluster sizes using angle-
resolved photoelectron spectroscopy [6]. Furthermore, vari-
ous theoretical calculations were applied to noble gas clusters
and dimers to study their interatomic interaction [7–12]. For
example, potential energy curves for three homonuclear
(He2, Ne2, Ar2) and three heteronuclear (He–Ne, He–Ar,
Ne–Ar) rare gas dimers were calculated using several corre-
lation consistent basis sets and the supermolecule single and
double excitation coupled-cluster theory with noniterative
perturbational treatment of triple excitations [7]. The
intermolecular potentials for the helium and argon dimer have
been computed using infinite-order symmetry-adapted pertur-
bation theory and very large orbital and explicitly correlated
basis sets [8, 9].

As a model for noble gas clusters, Lennard-Jones (LJ)
potential has been investigated widely, including homoge-
neous LJ clusters, binary LJ clusters [13, 14], ternary LJ
(TLJ) [15] clusters, and even quinary Ar11Kr11Xe11He11Ne11
clusters [16]. For instance, Marques and Pereira use LJ poten-
tial and improved LJ potentials to describe pair interactions in
ArnKr38−n, ArnXe38−n, and KrnXe38−n clusters [17]. On the
other hand, LJ potential is also used as a benchmark system
for testing the efficiency of global optimization algorithms.
For instance, at the early time, by lattice searching, the
efficiency of the genetic algorithm (GA) was improved for
optimization of LJ clusters up to 147 atoms [18]. Later,
investigation on icosahedral lattices was accomplished up to
309-atom LJ clusters [19]. In the work of Shao et al., LJ
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clusters in the size range of 310–561 were located for the first
time also by GA and lattice construction [20]. For the optimi-
zation of LJ561–1610 clusters, lattice searching was performed
using a greedy search method [21]. On the other hand, LJ
potential is also used in other areas, e.g., the interaction carbon
in single-walled carbon nanotubes (SWNTs) and the sur-
rounding fluid [22].

Global optimization of binary clusters is a challenging
problem in computational chemistry. The potential energy
surface of binary clusters is much more complicated than
that of monatomic clusters. Besides geometrical isomers in
optimization of monoatomic clusters, homotopic isomers
with a fixed number of atoms, the same composition and
geometry, but different ordering patterns of the atoms must
also be considered, thus both continuous and combinatorial
optimization have to be solved. Optimization algorithms,
such as GA [16, 23], the basin-hopping Monte Carlo algo-
rithm [24, 25], and adaptive immune optimization algorithm
(AIOA) [15, 26, 27] have been developed for the optimiza-
tion of binary clusters. Recently, the efficiency of the big-
bang method for the optimization of atomic clusters was
analyzed in detail for Morse pair potentials with different
parameters ranges [28]. For geometry optimization of bime-
tallic clusters, Lai et al. [29] proposed an efficient heuristic
algorithm composed of three ingredients: a monotonic
basin-hopping method with guided perturbation (MBH-
GP), a surface optimization method, and an iterated local
search (ILS) method, where MBH-GP and surface optimi-
zation method are used to optimize the geometric structure
of a cluster, and the ILS method is used to search the optimal
homotop for a fixed geometric structure. Similarly, another
heuristic algorithm (denoted by 3OP) that makes exten-
sive use of three perturbation operators was proposed
for binary LJ clusters [30]. In our previous studies, AIOA
was applied successfully to the structural optimization of
ternary clusters such as TLJ clusters and Cu–Ag–Au clusters
[15, 27].

In this study, the geometrical structures and energies of
mixed Ar19KrnXe19, Ar19Kr19Xen, and ArnKr19Xe19 (n=0–17)
clusters were investigated, and TLJ potential was applied to
study the structural transition in Ar–Kr–Xe clusters. Then,
reduced strain energies for Ar–Ar, Kr–Kr, Xe–Xe, Ar–Kr, Ar–
Xe, and Kr–Xe interactions were analyzed to propose possible
ways of reducing strain.

Methods

Ternary Lennard-Jones potential

The interatomic interaction of Ar–Kr–Xe clusters is de-
scribed by TLJ potential [15]. LJ potential is a pairwise
potential comprising a long-range attractive part and a

short-range repulsive part, which has been intensively in-
vestigated. The potential is given by
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where N is the number of atoms, and rij represents the distance
between atoms i and j; εij is the pair well depth, and σij is cluster
diameter (size). In Ar–Kr–Xe clusters, with respect to argon
(σArAr=1.00, εArAr=1.00), the present datum for σ and ε are
thus σKrKr=1.12403, σXeXe=1.206, σArKr=1.062, σKrXe=
1.16397, σArXe=1.074, εKrKr=1.373534, εXeXe=1.852, εArKr=
1.1717, εKrXe=1.59914, and εArXe=1.48. The parameters are
taken from references [31] and [32]. The potential energy of a
stable Ar–Kr–Xe cluster is calculated according to Eq. (1), and
the lowest value of potential energy corresponds to the mini-
mum energy structure.

Adaptive immune optimization algorithm

The minimum energy structures of ternary Ar–Kr–Xe
clusters are optimized by using AIOA [26, 27]. AIOA
is an adaptive heuristic search algorithm based on the
evolutionary ideas of natural genetic selection and clon-
al selection principles, which takes the basic frame of
GA. The basic steps of the AIOA include an immune
clone selection and a mutation operation. First, a num-
ber of configurations are generated randomly and opti-
mized locally, and these configurations form an original
gene library. Then, a population of individuals is select-
ed from the gene library by a selection probability in
the immune clone selection procedure described in [26].
Subsequently, the mutation operation is performed on
the selected individuals to generate new individuals.
For binary and ternary clusters, in the mutation of a
generation (a repetition), 50 % of individuals are select-
ed with energy-based mutation for geometrical isomers,
and the other 50 % of individuals are selected by an
atom exchange operation, i.e., two type atoms are se-
lected randomly and their location is exchanged for the
homotopic isomers in binary or ternary clusters. The
lower energy individual is kept in the library for the
updating operation. Finally, the combination of selec-
tion, mutation, and updating operations is repeated until
a preset maximal iteration number is reached. Therefore,
application of AIOA can find the stable structure of a
ternary cluster. In this study, 200 independent runs were
performed, and minimum energy structures appear at
least twice.

3120 J Mol Model (2013) 19:3119–3125



Results and discussion

Stable structures of Ar–Kr–Xe clusters

Putative stable structures of Ar19KrnXe19 (n=0–17),
Ar19Kr19Xen (n=0–17), and ArnKr19Xe19 (n=0–17)
clusters were investigated by AIOA. The investigated size
starts from 38 (i.e., n=0) because it may have an especially
stable fcc structure [33]. Moreover, the geometries of stoichio-
metric (19:19) clusters have been studied widely, and repre-
sent a well mixed pattern of the first and the second rare gas
atoms [27]. These 54 optimized structures are shown in
Figs. 1, 2 and 3, respectively, and their potential energies
calculated from Eq. (1) are listed in Table 1 for reference.
From these figures, it is clear that, in all clusters, only two
types, i.e., polytetrahedron [34] and six-fold pancake, of the
minimum energy configurations can be found. The
polytetrahedral configuration is found in aluminum clusters
with glue [35] and binary LJ [13] potential, and can also
explain the structure of quasicrystals and atomic liquids and
glasses. The six-fold pancake configuration is found in Ag-Au
[36] and Ag-Pd clusters [37] with Gupta potentials.

At first, in Ar19KrnXe19 (n=0–17) clusters as shown in
Fig. 1, Ar19Xe19 has a polytetrahedral structure with most
Ar atoms in the inner-shell and Xe atoms on the surface, and
the distribution of Ar and Xe atoms is similar to that
discussed in [31]. With the increase in size n from 1 to 14,

it can be seen that all clusters have polytetrahedral struc-
tures. In Ar19KrnXe19 (n=1–14) clusters, the inner core is
occupied mostly by Ar atoms, and Xe atoms are distributed
on the surface as in the Ar19Xe19 cluster. Furthermore, the
added Kr atoms are dispersed on the surface, and Kr and Xe
atoms are mixed on the surface. However, at Ar19KrnXe19
(n=15–17) clusters, the motif becomes six-fold pancake.
Specifically, the central atom of these clusters is Xe,
surrounded by 12 Ar atoms. These Ar atoms are then further
surrounded by Kr and Xe atoms, but Kr and Xe atoms are
significantly segregated. Kr atoms tend to be together
around the inner core, and Xe atoms are located on the top
and bottom sites.

For Ar19Kr19Xen (n=0–17) clusters in Fig. 2, with the
increasing n from 0 to 12, it is clear that all clusters have
polytetrahedral structures. In these clusters, the inner core is
occupied mostly by Ar atoms, and Kr atoms are distributed
on the surface. Furthermore, the added Xe atoms are dis-
persed on the surface, and Kr and Xe atoms are mixed on the
surface. However, for Ar19Kr19Xen (n=13–17) clusters, the
motif is a six-fold pancake. Specifically, the central atom of
these clusters is Xe, surrounded by 12 Ar atoms as in
Ar19Kr19Xen (n=13–17) clusters, with Ar atoms further
surrounded by Kr and Xe atoms. Moreover, Kr and Xe
atoms are significantly segregated.

In Fig. 3, for ArnKr19Xe19 (n=0–17) clusters, upon in-
creasing n from 0 to 14, it can be seen that all clusters have

Fig. 1 Putative global minimal structures of Ar19KrnXe19 (n=0–17) clusters, and Ar, Kr, and Xe atoms are represented by pink, green, and blue
spheres, respectively
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polytetrahedral structures. In the Kr19Xe19 cluster, the inner
two sites are occupied by Kr atoms, and mixed Kr and Xe
atoms occupy the other sites. It can be deduced that

icosahedral Kr–Xe clusters prefer to have Kr atoms at the
center, which is contrary to the argument that atoms with
larger ε prefer to occupy interior sites [31]. Furthermore,

Fig. 2 Putative global minimal structures of Ar19Kr19Xen (n=0–17) clusters, and Ar, Kr, and Xe atoms are represented by pink, green, and blue
spheres, respectively

Fig. 3 Putative global minimal structures of ArnKr19Xe19 (n=0–17) clusters, and Ar, Kr, and Xe atoms are represented by pink, green, and blue
spheres, respectively
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from the figure, it is clear that the added Ar atoms grow
mainly in the inner core, and Kr and Xe atoms on the surface
have a similar growth pattern as in Figs. 1 and 2. Moreover,
for ArnKr19Xe19 (n=15–17) clusters, the motif is a six-fold
pancake. Specifically, the location of the central Xe atom
and surface atoms of Kr and Xe is similar to the case in
Ar19KrnXe19 (n=15–17) and Ar19Kr19Xen (n=13–17) clus-
ters. Clearly, Ar–Kr–Xe clusters tend to be polytetrahedral
structures with sizes smaller than 53, and six-fold pancake
structures with sizes of 53–55.

From Figs. 1, 2 and 3, it can be seen that, in these
clusters, when n is smaller than 13, i.e., the atomic number
of one element is smaller than those of other two elements,
Ar–Kr–Xe clusters adopt the polytetrahedron motif.
However, when n≥13, i.e., the atomic number of Ar, Kr,
and Xe is close, a six-fold pancake is formed easily with
similar atomic distribution of the Ar, Kr, and Xe in clusters.

Energy analysis of Ar–Kr–Xe clusters

To analyze the stability of a cluster of a certain composition
compared to its neighbors, the second order finite difference
Δ2E is applied. For instance, in Ar19KrnXe19 clusters, Δ2E
is the energy released by migrating one Kr atom from
Ar19Krn+1Xe19 to Ar19Krn−1Xe19 to form two Ar19KrnXe19
particles, and it is defined as Δ2E ¼ Emin N þ 1ð Þ þ Emin

N � 1ð Þ � 2EminðNÞ of the energy, where Emin(N) is the
potential energy of minimum structure for N-atom Ar–Kr–Xe
clusters. Figure 4 plots Δ2E for Ar19KrnXe19, Ar19Kr19Xen,
and ArnKr19Xe19 (n=0–17) clusters with size n. In the figure,

the positive peaks of Δ2E correspond to particularly stable
structures with respect to their neighbors, which are usually
designated as magic numbers observed in mass spectra. From
the curves of Ar19KrnXe19 and Ar19Kr19Xen (n=0–17) clus-
ters, peaks are almost the same at n=4, 6, 8, 10, and 13.
Furthermore, from the results of the second difference three
apparent positive peaks, i.e., Ar3Kr19Xe19, Ar7Kr19Xe19, and
Ar10Kr19Xe19, are found in ArnKr19Xe19 (n=0–17) clusters.
However, we could not check this hypothesis because of the
scarcity of reports on the energies or structures of their lowest-
energy clusters.

Table 1 Calculated potential
energies (eV) by Eq. (1) of the
lowest-energy structures of
Ar19KrnXe19, Ar19Kr19Xen, and
ArnKr19Xe19 (n=0–17) clusters
by adaptive immune optimiza-
tion algorithm (AIOA)

Composition Energy Composition Energy Composition Energy

Ar19Xe19 −264.9268 Ar19Kr19 −214.3887 Kr19Xe19 −284.9237

Ar19Kr1Xe19 −274.3766 Ar19Kr19Xe1 −225.8778 Ar1Kr19Xe19 −293.4400

Ar19Kr2Xe19 −281.8266 Ar19Kr19Xe2 −236.3539 Ar2Kr19Xe19 −300.3948

Ar19Kr3Xe19 −291.0287 Ar19Kr19Xe3 −247.3493 Ar3Kr19Xe19 −307.6664

Ar19Kr4Xe19 −299.3599 Ar19Kr19Xe4 −258.6374 Ar4Kr19Xe19 −315.5574

Ar19Kr5Xe19 −308.9872 Ar19Kr19Xe5 −269.3847 Ar5Kr19Xe19 −322.6130

Ar19Kr6Xe19 −318.8992 Ar19Kr19Xe6 −280.8627 Ar6Kr19Xe19 −330.6011

Ar19Kr7Xe19 −328.9015 Ar19Kr19Xe7 −291.6813 Ar7Kr19Xe19 −337.6220

Ar19Kr8Xe19 −336.1134 Ar19Kr19Xe8 −302.9095 Ar8Kr19Xe19 −346.1141

Ar19Kr9Xe19 −343.9866 Ar19Kr19Xe9 −313.8974 Ar9Kr19Xe19 −353.1805

Ar19Kr10Xe19 −352.6397 Ar19Kr19Xe10 −325.3386 Ar10Kr19Xe19 −361.2532

Ar19Kr11Xe19 −360.2104 Ar19Kr19Xe11 −336.2299 Ar11Kr19Xe19 −368.6469

Ar19Kr12Xe19 −368.5227 Ar19Kr19Xe12 −348.1803 Ar12Kr19Xe19 −375.9860

Ar19Kr13Xe19 −376.6796 Ar19Kr19Xe13 −359.8349 Ar13Kr19Xe19 −383.6541

Ar19Kr14Xe19 −384.5583 Ar19Kr19Xe14 −370.1720 Ar14Kr19Xe19 −389.8877

Ar19Kr15Xe19 −392.7321 Ar19Kr19Xe15 −381.7628 Ar15Kr19Xe19 −397.7976

Ar19Kr16Xe19 −401.6754 Ar19Kr19Xe16 −393.7416 Ar16Kr19Xe19 −405.3291

Ar19Kr17Xe19 −409.2088 Ar19Kr19Xe17 −404.1559 Ar17Kr19Xe19 −411.5283

Fig. 4 Second finite differences of the energies of the optimized
Ar19KrnXe19 (n=0–17), Ar19Kr19Xen (n=0–17), and ArnKr19Xe19
(n=0–17) clusters
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Reduced strain energies in Ar–Kr–Xe clusters

The role of heterogeneity on the strain in Ar–Kr–Xe
clusters was investigated, and the various contributions
to the reduced strain energies, i.e., the strain energy
divided by both the corresponding number of nearest
neighbors and the pair potential well depth [31], were
computed. The strain energies for Ar–Ar, Kr–Kr, Xe–
Xe, Ar–Kr, Ar–Xe, and Kr–Xe interactions are defined
as follows [33]:

Estrain
Ar�Ar ¼ EAr�Ar þ Nnn

Ar�Ar"Ar�Ar ð2Þ

Estrain
Kr�Kr ¼ EKr�Kr þ Nnn

Kr�Kr"Kr�Kr ð3Þ

Estrain
Xe�Xe ¼ EXe�Xe þ Nnn

Xe�Xe"Xe�Xe ð4Þ

Estrain
Ar�Kr ¼ EAr�Kr þ Nnn

Ar�Kr"Ar�Kr ð5Þ

Estrain
Ar�Xe ¼ EAr�Xe þ Nnn

Ar�Xe"Ar�Xe ð6Þ

Estrain
Kr�Xe ¼ EKr�Xe þ Nnn

Kr�Xe"Kr�Xe ð7Þ

In these equations, EX−Y is the total binding energy
between atoms X and Y, Nnn

X�Y is the number of X−Y
nearest neighbors, which is given by Nnn

X�Y ¼ P
i<j

dij, if rij≤
1.2σij , δij=1, otherwise, δij=0. Lennard-Jones well depth
ε
X-Y corresponds to the interaction between X and Yatoms.
Reduced strain energies are defined as estrain ¼ Estrain Nnn"=

to account for the different magnitudes of the interactions
among atom types. In term of these definitions, the strain
energies are always positive quantities. The strain energies
of Ar19KrnXe19, Ar19Kr19Xen, and ArnKr19Xe19 (n=0–17)
clusters are represented versus composition in Fig. 5.
They give us some insight into possible ways of reducing
strain.

From Fig. 5a, it seems to be clear that, in Ar19KrnXe19
(n=0–17) clusters, the total strain energies of all bonds for
six-fold pancake structures are lowest at n=15–17. However,
for n=0–14, polytetrahedral structures have relatively high
strain energies. This can be accounted for by high Ar–Ar
and Ar–Kr strain energies in the figure. In Ar19Kr19Xen
(n=0–17) clusters of Fig. 5b, the strain energies are deter-
mined mainly by Ar–Ar and Xe–Xe bonds, and for six-fold
pancake structures at n=13–17, their values are relatively low.
Furthermore, in the area of high strain energies, i.e., n=1–2,
the Kr–Kr bonds generate a high strain energy. Moreover, the
strain energies of polytetrahedral clusters, i.e., n=0–14, are
higher than those of six-fold pancake clusters at n=15–17.
Therefore, it can be seen that Ar–Ar, Ar–Kr, and Xe–Xe
bonds affect the strain energies.

Conclusions

The geometrical structures and energies of mixed Ar–Kr–Xe
clusters were investigated by AIOA. Mixed Ar19KrnXe19,
Ar19Kr19Xen, and ArnKr19Xe19 (n=0–17) clusters were

Fig. 5 Reduced strain energies for Ar–Ar, Kr–Kr, Xe–Xe, Ar–Kr, Ar–Xe,
and Kr–Xe interactions in a Ar19KrnXe19 (n=0–17) clusters, b
Ar19Kr19Xen (n=0–17), and c ArnKr19Xe19 (n=0–17) clusters
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optimized. The results show that only two minimum energy
configurations exist, i.e., polytetrahedron and six-fold pan-
cake. The inner core of all these clusters is composed mainly
of Ar atoms, and Kr and Xe atoms are distributed on the
surface, with a well mixed pattern for polytetrahedral and
segregative pattern for six-fold pancake configurations.
Reduced strain energies for Ar–Ar, Kr–Kr, Xe–Xe, Ar–Kr,
Ar–Xe, and Kr–Xe interactions were then analyzed to propose
possible ways of reducing strain. The results show that Ar–Ar,
Ar–Kr, and Xe–Xe bonds affect strain energies. This finding
might be helpful for the theoretical guidance and experimental
validation of Ar–Kr–Xe clusters. From the analysis of strain
energies, it could be concluded that Ar–Kr–Xe clusters with
six-fold pancake structures might be the most stable, and this
is expected to be validated experimentally.
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